Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A computational thermodynamics approach has been employed to design CoCrFeMnNi-based medium- and high- entropy alloys (M/HEAs) with systematically varied compositions (Co((80-X)/2)Cr((80-X)/2)FeXMn10Ni10 with x = 30, 40, and 50 at.%) and phase stability. Since the formation of sigma phase, usually brittle and undesirable, is a common concern, when this class of alloys is subjected to elevated temperatures (600–1000 ◦C), predicting its formation becomes essential. Thus, its formation and the phase equilibria were studied using the CALPHAD method, and two empirical methods, namely, valence electron concentration (VEC) and paired sigma-forming element (PSFE). Isothermal aging treatments at 900–1100 ◦C for 20 h were performed, since CALPHAD and VEC/PSFE predictions diverged. Both prediction methods were compared with experimental characterization by a combination of scanning electron microscopy and high-energy synchrotron X-ray diffraction. The predictions from the VEC/PSFE and CALPHAD calculations (depending on the database used) were shown to be quite accurate.more » « lessFree, publicly-accessible full text available November 1, 2025
-
This work proposes a methodology for designing high-strength precipitation-hardened high entropy alloys (HEAs) with an FCC matrix and L12 precipitates. High-throughput solidification calculations were conducted using the CALPHAD method, evaluating 11,235 alloys in the Cr-Co-Ni-Al-Ti system under specific boundary conditions. The acquired information was used to filter the alloys, focusing on alloys exhibiting an FCC+L12 phase field at 750 °C, a solidification interval narrower than 100 °C, and a solvus temperature under 1100 çC. The filtered alloys were analyzed to estimate their solid solution and precipitation hardening contributions to yield strength, with antiphase boundary energy (APB) assessed using two models. Three alloys were selected for testing the proposed strategy, including one with the highest yield stress and others for comparison. These alloys were produced, processed, and characterized using DSC, synchrotron XRD, SEM, and TEM. The results showed that the desired microstructure was achieved, with the alloys consisting of an FCC matrix and a high-volume fraction of L12 precipitates. Tensile tests at room temperature, 650 °C, 750 °C, and 850 °C demonstrated that the proposed model predicts well the yield strength trends, demonstrating the potential of the proposed approach for accelerating the discovery and development of novel HEAs with tailored properties.more » « less
-
The continued development of metal additive manufacturing (AM) has expanded the engineering metallic alloys for which these processes may be applied, including beta-titanium alloys with desirable strength-to-density ratios. To understand the response of beta-titanium alloys to AM processing, solidification and microstructure evolution needs to be investigated. In particular, thermal gradients (Gs) and solidification velocities (Vs) experienced during AM are needed to link processing to microstructure development, including the columnar-to-equiaxed transition (CET). In this work, in situ synchrotron X-ray radiography of the beta-titanium alloy Ti-10V-2Fe-3Al (wt.%) (Ti-1023) during simulated laser-powder bed fusion (L-PBF) was performed at the Advanced Photon Source at Argonne National Laboratory, allowing for direct determination of Vs. Two different computational modeling tools, SYSWELD and FLOW-3D, were utilized to investigate the solidification conditions of spot and raster melt scenarios. The predicted Vs obtained from both pieces of computational software exhibited good agreement with those obtained from in situ synchrotron X-ray radiography measurements. The model that accounted for fluid flow also showed the ability to predict trends unobservable in the in situ synchrotron X-ray radiography, but are known to occur during rapid solidification. A CET model for Ti-1023 was also developed using the Kurz–Giovanola–Trivedi model, which allowed modeled Gs and Vs to be compared in the context of predicted grain morphologies. Both pieces of software were in agreement for morphology predictions of spot-melts, but drastically differed for raster predictions. The discrepancy is attributable to the difference in accounting for fluid flow, resulting in magnitude-different values of Gs for similar Vs.more » « less
An official website of the United States government
